Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Isabel C. Santos,^a* Dulce Belo,^a Joana Mendonça,^a Mauro João Figueira,^a Manuel Almeida^a and Concepcion Rovira^b

^aInstituto Tecnológico e Nuclear, Departamento de Química, Estrada Nacional 10, P-2686-953 Sacavém, Portugal, and ^bInstitut de Ciència de Materials de Barcelona, (CSIC) Campus, Universitari de Bellaterra, E-08193 Cerdanyola, Spain

Correspondence e-mail: icsantos@itn.pt

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.004 Å R factor = 0.039 wR factor = 0.099 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_5H_4OS_3$, contains discrete molecules, which are linked into sheets by a combination of short $S \cdots S$ contacts $[S \cdots S = 3.512 (1) \text{ and } 3.586 (1) \text{ Å}]$ and $C-H \cdots O$ hydrogen bonds.

5,6-Dihydrothieno[2,3-d][1,3]dithiol-2-one

Received 6 June 2005 Accepted 9 June 2005 Online 17 June 2005

Comment

The title compound, (I), has been used successfully as a precursor in the synthesis of the π electronic donor BET-TTF [bis(ethylenethio)tetrathiafulvalene; Pérez-Benítez et al., 1999]. This organic TTF-type donor has been used as a precursor of new molecular materials with interesting conducting properties (Rovira, 1999). More recently, this ketone has also been used as a precursor in the synthesis of new transition metal bisdithiothiophene compounds, either by direct hydrolytic cleavage with potassium methoxide in CH₃OH solution, to form the 2,3-dihydro-5,6-thiophenedithiolate ligand, or by being aromatized with DDQ (2,3dichloro-5,6-dicyanobenzoquinone), to give 5,6-thieno[2,3-d]-1,3-dithiol-2-one. The latter is used as a precursor in the syntheses of complexes with the bis-2,3-thiophenedithiolate (tpdt) ligand. The Au(α -tpdt)₂ species, which uses this ketone as a precursor, is one of the first materials, based on a neutral species, exhibiting metallic type behaviour (Belo, Alves, Lopes et al., 2001; Belo, Alves, Rabaça et al., 2001). As already seen in the precursor ketone, the S atoms present in the molecule, especially the thiophene S atom, are able to establish contacts with neighbouring species. This situation gives rise to extra intermolecular $S \cdots S$ contacts, which are very important in the control of the crystal structure and the resulting electronic properties in molecular materials. The crystal structure and supramolecular arrangement of 5,6-dihydrothieno[2,3-d]-1,3dithiol-2-one, (I), are reported here.

The molecular structure of (I) is illustrated in Fig. 1. Selected bond distances and angles are given in Table 1. The molecule is almost planar; however, atoms S3 and C4 of the thiophene ring deviate by 0.179 (3) and 0.153 (4) Å, respectively, from the least-squares plane through the other non-H atoms in the molecule.

In the crystal structure of (I), the hydrogen bonds and $S \cdots S$ short contacts play an important role in controlling the supramolecular assembly of the molecules. Details are given in

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 1

The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A packing diagram of (I), showing the intermolecular contacts within a layer. Dashed lines indicate the S. . . S short contacts and the C-H. . . O hydrogen bonds between the dimers of molecules (see Tables 1 and 2 for details).

Tables 1 and 2, and Fig. 2. The short contacts between neighbouring molecules $[S1 \cdots S3^{i} = 3.512 (1) \text{ Å and } S3 \cdots S3^{i} =$ 3.586 (1) Å] create centrosymmetric dimers. These are interconnected by hydrogen bonds in the bc plane, forming a layerlike structure.

Experimental

The title compound, (I), was synthesized according to literature methods (Pérez-Benítez et al., 1999). Suitable colourless needleshaped crystals were obtained by slow evaporation and cooling of hexane solutions.

Crystal data

$C_5H_4OS_3$	$D_x = 1.749 \text{ Mg m}^{-3}$
$M_r = 176.26$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
a = 4.0743 (7) Å	reflections
b = 11.154 (2) Å	$\theta = 8-12^{\circ}$
c = 14.778 (4) Å	$\mu = 1.01 \text{ mm}^{-1}$
$\beta = 94.651 \ (17)^{\circ}$	T = 294 (2) K
$V = 669.4 (2) \text{ Å}^3$	Needle, colourless
Z = 4	$0.38 \times 0.16 \times 0.08 \ \mathrm{mm}$

Data collection

Enraf–Nonius CAD-4	$R_{\rm int} = 0.020$
diffractometer	$\theta_{\rm max} = 27.0^{\circ}$
ω –2 θ scans	$h = -5 \rightarrow 5$
Absorption correction: ψ scan	$k = 0 \rightarrow 14$
(North et al., 1968)	$l = 0 \rightarrow 18$
$T_{\min} = 0.825, \ T_{\max} = 0.949$	5 standard reflections
1476 measured reflections	every 200 reflections
1423 independent reflections	intensity decay: none
1132 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.099$ S = 1.091423 reflections 82 parameters H-atom parameters constrained

+ 1.0429P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

 $w = 1/[\sigma^2(F_0^2) + (0.0384P)^2]$

Table 1 Selected geometric parameters (Å).

Commentary and any (i)		1	
$S1 \cdots S3^{i}$	3.586 (1)	$S3 \cdot \cdot \cdot S3^{ii}$	3.512 (1)
\$2-C3	1.737 (3)	C4-C5	1.543 (4)
S1-C2	1.732 (3)	C3-C4	1.559 (4)
C1-S1	1.781 (3)	C2-C3	1.337 (4)
C1-S2	1.774 (3)	S3-C5	1.804 (4)
C1-O	1.201 (4)	\$3-C2	1.740 (3)
-			

Symmetry codes: (i) -x + 1, -y + 1, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C4-H4A\cdots O^{ii}$	0.97	2.58	3.517 (4)	162
$C5-H5A\cdots O^{iii}$	0.97	2.70	3.578 (5)	150
	1	. 1	. 1 . 1	

Symmetry codes: (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}$, $z + \frac{1}{2}$.

All of the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: CAD-4 Software: data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was partially supported by Fundação Ciência e Tecnologia (Portugal) under contract POCTI/QUI/45108/ 2002, by DGI project BQU2003-00760 and by DGR Catalonia, project 2001SGR00362 (Spain). The collaboration between the team members of Sacavém and Barcelona was supported under the CSIC-ICCTI bilateral agreement. This work also benefited from COST action D14.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

- Belo, D., Alves, H., Lopes, E. B., Duarte, M. T., Gama, V., Henriques, R. T., Almeida, M., Pérez-Benítez, A., Rovira, C. & Veciana, J. (2001). *Chem. Eur. J.* **7**, 511–519.
- Belo, D., Alves, H., Rabaça, S., Pereira, L. C., Duarte, M. T., Gama, V., Henriques, R. T., Almeida, M., Ribera, E., Rovira, C. & Veciana, J. (2001). *Eur. J. Inorg. Chem.* pp. 3127–3132.
- Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Pérez-Benítez, A., Tarrés, J., Ribera, E., Veciana, J. & Rovira, C. (1999). Synthesis, 4, 577.
- Rovira, C. (1999). In Supramolecular Engineering of Synthetic Metallic Materials, edited by J. Veciana, C. Rovira & D. Amabilino, pp. 377–392. Dordrecht: Kluwer Academic Publishers.
- Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.